1.读取本地视频流,pom依赖
依赖于 org.bytedeco下的javacv/opencv/ffmpeg 包
org.bytedeco javacv 1.4.3 org.bytedeco.javacpp-presets opencv 3.4.3-1.4.3 linux-x86_64 org.bytedeco.javacpp-presets ffmpeg 4.0.2-1.4.3 linux-x86_64
2.读取本地视频流并解帧为 opencv_core.Mat
File file = new File("/home/lab/javacv/t11.mp4");FFmpegFrameGrabber grabber = new FFmpegFrameGrabber(file);grabber.start();// 解帧为opencv_core.MatListmats = new ArrayList<>();for (int i = 0; i < grabber.getLengthInFrames(); i++) { Frame frame = grabber.grabImage(); OpenCVFrameConverter.ToMat toMat = new OpenCVFrameConverter.ToMat(); opencv_core.Mat mat = toMat.convert(frame); if (mat != null) { mats.add(mat.clone()); }}grabber.stop();
3.获取32位dhash特征
dhash特征提取思路,图片Mat转为单通道的灰度图,并重置为5*5的Size,最后将其转储为长度为 25 的byte数组用以求取32位dhash特征
// 声明空的灰度图 Matopencv_core.Mat grayImg = new opencv_core.Mat(mat.rows(), mat.cols(), opencv_imgcodecs.IMREAD_GRAYSCALE);// 转储为灰度图opencv_imgproc.cvtColor(mat, grayImg, opencv_imgproc.COLOR_RGB2GRAY);// 修改Mat长宽sizeopencv_core.Mat resizedImg = new opencv_core.Mat();opencv_core.Size size = new opencv_core.Size(5,5);opencv_imgproc.resize(grayImg,resizedImg,size);// 转为 5*5 byte 数组byte[] bytePixels = new byte[5 * 5];resizedImg.data().get(bytePixels);int[] pixels = new int[bytePixels.length];for (int i=0; ipixels[(i+1)*5+j] ? 1 : 0; feature = (feature << 1) + colBit; int rowBit = pixels[i*5+j] > pixels[i*5+j+1] ? 1 : 0 ; feature = (feature << 1) + rowBit; }}
多线程部分,可参考该博: https://www.cnblogs.com/nyatom/p/10119306.html